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1. Introduction

The increasing complexity of the environments in which future
intelligent systems are expected to operate requires an
understanding of the cause–effect relations between events,
especially those affecting the performance of such systems.[1]

Unsurprisingly, Causal Inference has become a crucial analysis
across various research domains, including Earth science,[2]

healthcare,[3] and robotics.[4,5] To estimate the causal models that
explain the available data, in recent decades, many causal discov-
ery algorithms for observational data in static and dynamic

scenarios have been developed.[6] That is,
causal models are generated relying only
on passive observations of the surrounding
world, without taking into account the
effect of hypothetical interventions.
Observational data are often insufficient
to retrieve the correct causal model in com-
plex scenarios where it is impossible to
account for all the variables responsible
for the system’s evolution. In such cases,
hybrid approaches that incorporate first
principles into data-driven models can
potentially improve the quality of the
model.[7–10] Using first-principles models
as constraints might reduce the degrees
of freedom in causal discovery algorithms
and improve the accuracy of their results.
However, this approach requires prior
knowledge of the system’s type or the fun-
damental physical laws governing its
behavior, which can limit the algorithm’s
versatility. This potential solution has not

been widely investigated in the causality community yet.
Conversely, an area that has been studied more extensively in
the causality community involves using interventional data, that
is, data from experiments, to eliminate spurious correlations and
enhance the quality of the causal model.[1,11] For this reason,
recent works have led to the development of algorithms for static
(i.e., time independent) data capable of constructing the causal
model by leveraging both observations and interventions.[12–18]

To our knowledge though, none of the previously mentioned
works conduct causal discovery analysis for time-series data
using observations and interventions. This represents a signifi-
cant limitation for many real-world problems, such as sensor
readings or dynamic process monitoring. Therefore, although
it is obvious that using intervention information significantly
enhances the quality of the causal model,[1,11] our specific goal
is to develop a causal discovery algorithm for time-series data
capable of achieving this. Indeed, in this article, we extend
and improve a recent state-of-the-art causal discovery for time-
series data, latent-Peter and Clarke momentary conditional
independence (LPCMCI),[19] enabling it to retrieve the causal
model from both observational and interventional data, which
increases the accuracy of the causal analysis. We named our
solution CAnDOIT, CAusal Discovery with Observational and
Interventional data from Time Series. The main contributions
of this article are therefore the following: 1) A new causal discov-
ery algorithm for time series capable of integrating interventional
and observational data into the causal discovery process. To this
end, we significantly enhance the accuracy of causal discovery,
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demonstrate that the approach can effectively handle data from interventions and
exploit them to enhance the accuracy of the causal analysis. A Python imple-
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outperforming current state-of-the-art algorithms; and 2) A pub-
licly available implementation of the algorithm, experimentally
evaluated on various synthetic models from an ad-hoc
random-model generator and a simulated robot manipulation
scenario.

The article is structured as follows: related work about causal
from observations with and without interventions is presented in
Section 2; Section 3 explains the implementation details of our
method; Section 4 and 5 present experimental results in ran-
domly generated and robot simulation models, respectively, to
validate correctness and performance of our solution; finally,
we conclude the article in Section 6 discussing achievements
and future work.

2. Related Work

2.1. Observation-Based Causal Discovery

Structural causal models (SCMs) and directed acyclic graphs
(DAGs) are at the core of causal inference.[20] They both repre-
sent system variables and their causal dependencies, the former
with mathematical expressions, and the latter with nodes and ori-
ented edges. Various methods have been developed to derive
causal relationships from observational data, categorized into
three main classes:[6] 1) constraint-based methods, such as PC
and fast causal inference (FCI),[21] use CI tests to recover the
causal graph; 2) score-based methods, like greedy equivalence
search[22] and NOTEARS,[23] assigns scores to DAGs and explore
the score space accordingly; and 3) noise-based methods, such as
linear non-Gaussian acyclic models (LiNGAM),[24] identify causal
structure within variables, assuming linearity, non-Gaussianity,
and acyclicity of the model. However, most of these algorithms
are applicable only to static data without temporal information,
so they are not suitable for many interesting problems in Earth
science,[2] healthcare,[3] or robotics.[4,5]

To address this limitation, various causal discovery algorithm
have been developed to deal with time-series data.[25] For exam-
ple, within the area of Granger causality, the temporal causal
discovery framework[26] employs deep neural networks to learn
complex nonlinear causal relationships among time series.
However, it faces challenges due to many hyperparameters
and lacks a direct way to set the maximum timelags. Among
the noise-based methods, there are time series models with inde-
pendent noise[27] and vector autoregressive LiNGAM.[28] In the
score-based methods class, the time-series version of NOTEARS,
called DYNOTEARS,[29] has been introduced. In the constraint-
based methods category, variations of the FCI and PC algo-
rithms, namely, time-series FCI (tsFCI)[30] and PC momentary
CI (PCMCI),[31] were tailored to handle time-series data. PCMCI,
in particular, has been applied to many research fields, including
climate, healthcare, and robotics.[3,32,33] Recently, various exten-
sions of this algorithm have been introduced. PCMCIþ,[34] for
example, allows the discovery of simultaneous causal dependen-
cies. Its further extension, LPCMCI, allows simultaneous causal
dependencies and latent confounders.[19] Filtered-PCMCI,[35]

instead, includes an additional transfer entropy-based feature-
selection module to remove unnecessary variables and perform
causal discovery only on those responsible for the dynamic

evolution of the observed scenario, resulting in faster model
generation. Joint-PCMCIþ (J-PCMCIþ)[36] enables causal struc-
ture learning from multiple observational datasets. Finally,
PCMCIΩ

[37] assumes a finite periodical repetition of causal
mechanisms, which is suitable for semistationary time-series
data.

Despite dealing with time-series, the above algorithms work
only with observational data and cannot handle the theoretical
concept of intervention, specifically the so-called do-operator.[1]

This operator overrides the structural equations of the interven-
tion variables, disrupting the original dependencies in the obser-
vational setting. The concept of intervention is a fundamental
aspect of causality. Studying how a variable reacts in response
to a forced modification of another variable provides a deeper
understanding of the system compared to what simple observa-
tions can offer.

2.2. Observation and Intervention-Based Causal Discovery

Incorporating interventional data into the causal discovery pro-
cess differs from its use in other causal problems, like measuring
the average treatment effect (ATE).[11] The ATE is a metric
employed to evaluate the causal influence of a specific interven-
tion on an outcome, given the presence of a causal model.
Conversely, interventional data can be used to enhance the accu-
racy of the discovery process to find that model. Formally,
performing causal discovery on observational data means that
the true DAG is only identifiable up to a Markov equivalence
class (MEC).[1] However, by incorporating interventional data,
identifiability can be improved up to an interventional class
(I-MEC),[38] which is a subset of MEC. The same consideration
applies when dealing with maximal ancestral graphs (MAGs),
where the equivalence class is represented by a partial ancestral
graph (PAG), capturing the CI relations among observed varia-
bles while accounting for latent variables. For this reason, various
algorithms have been developed for causal discovery using both
observational and interventional datasets.

The interventional greedy sparsest permutation (IGSP)[38]

algorithm has been proposed to learn causal DAGs when both
observational and interventional data are available. Its extension,
unknown target IGSP (UT-IGSP),[39] enables DAG learning
also when the intervention targets are partially or completely
unknown. An extension of the FCI causal discovery method
has been proposed to enable causal model learning by combining
observations and experiments (i.e., soft interventions).[16] This
extension has been further improved by Ψ-FCI to handle
unknown intervention targets.[17] Recent neural approaches,
such as differentiable causal discovery with interventions
(DCDI)[13] and efficient neural causal discovery,[40] can handle
various types of interventional data. An extension of DCDI
has also been developed to use latent interventions.[18] The mul-
tiple interventional datasets for efficient global causal structure
learning[15] algorithm learns a causal skeleton using a variant
of the PC algorithm adapted to handle multiple interventional
datasets simultaneously. It then orients the skeleton by identify-
ing an I-MEC and applies a score function to conduct a greedy
search for each causal DAG from each dataset within the remain-
ing search space. Finally, the graphs are merged to obtain the
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final causal structure. Recently, a novel framework, called joint
causal inference (JCI),[14] has been proposed to facilitate causal
discovery considering different contexts of the same scenario.
The authors elaborate on how this approach can be employed
to model interventions as context changes. By exploiting this
framework, existing observational causal inference algorithms
can be enhanced to learn causal structures from interventional
data.

All these works, however, conduct causal analysis from
observations and interventions on static datasets. As already
mentioned, this limitation poses significant challenges for many
applications where temporal information cannot be ignored and
is crucial for correctly modeling the system. Our approach targets
these types of applications and differs from previous solutions as
it performs causal discovery on time-series data by incorporating
both observations and interventions.

3. Causal Discovery Based on Observational and
Interventional Data

The solutions proposed in this article, called CAnDOIT, extends
and improves the state-of-the-art causal discovery algorithm for
time-series data, LPCMCI,[19] taking inspiration from the way
JCI[14] handles interventions with known target. The result is
a new algorithm that enables precise causal analysis, using both
observational and interventional data, with significantly
improved accuracy. Specifically, CAnDOIT extends LPCMCI
by performing causal discovery with hard interventions on
known targets.

3.1. LPCMCI

The original LPCMCI[19] algorithm is an enhancement of
PCMCIþ,[34] extending it by removing the causal sufficiency
assumption as an initial condition. LPCMCI retains the ability
to detect both time-lagged and contemporaneous cause–effect
relationships between variables from its predecessors, PCMCI
and PCMCIþ. Additionally, it relaxes the causal sufficiency
assumption, allowing for the inclusion of latent confounders,
that is, unobserved common causes.

In more detail, LPCMCI is a constraint-based causal discovery
algorithm that begins with a fully connected graph G. The algo-
rithm then proceeds through a preliminary phase, which
removes many (though not necessarily all) false links and repeat-
edly applies a set of orientation rules to define the heads and tails
of the edges. These rules help identify a subset of the (non-)
ancestorships in G. The identified nonancestorships and ances-
torships further constrain the conditioning sets for subsequent
CI tests. The goal of this iterative process is to accurately deter-
mine a subset of the parentships in G. This subset is then used in
the final phase of the algorithm, which involves further removal
of links, application of orientation rules, and use of identified
(non-)ancestorships. Ultimately, LPCMCI outputs a time-series
PAG.

In real-world applications, the challenge of latent confounders
is almost always present, as it is generally impossible to
account for all variables influencing the system’s evolution.
Consequently, given our interest for real-world applications in

dynamic scenarios, we based our CAnDOIT algorithm on
LPCMCI to leverage its capability to handle hidden confounders
effectively.

3.2. Interventions Through Context Variables

Combining observational and interventional data in the causal
discovery process requires the causal structure related to the
intervention variable to adapt to both the observational and inter-
ventional cases. Specifically, we need to consider the parents of
the intervention variable when dealing with observational data,
while we must break all the links affecting the intervention
variable when performing the intervention. To address this chal-
lenge, we use context nodes to model interventions, taking inspi-
ration from the JCI framework. The latter distinguishes between
system variables, which describe the actual system, and context
variables, which refer to the observation context. While the sys-
tem variables are treated as endogenous, the context variables are
typically (but not necessarily) exogenous. System and context
variables form a new metasystem M, which is used for the causal
analysis. Accordingly, our metasystem is defined as follows.

ℳ∶
�
XiðtÞ ¼ f̃ ðPaðXiÞ,CXkÞ i ∈ ℐ, k ∈ K

CXk ¼ f k k ∈ K
(1)

where I represents the set of system variables defined as
X ¼ ðXiÞi∈ℐ, while K represents the set of context variables
defined as C ¼ ðCXkÞk∈K. Pa(Xi) is the parent set of the system
variable Xi, instead CXk is the context variable k. Moreover, the
function f̃ models the system variables and can be decomposed
as follows.

f̃ ðPaðXiÞ,CXkÞ∶
�
f ðPaðXiÞÞ CXk ¼ 0

CXk CXk ¼ ξk
(2)

where f represents the function that models the evolution
of the system variable Xi in the observational case, which depends
solely on its parent set Pa(Xi). Referring again to Equation (1),
the function fk models the context variables and it is defined
as follows.

f k∶
�
ξk interventionalmode for k

0 observationalmode for k
(3)

The case where CXk= 0 corresponds to no intervention, that
is, the observational baseline, while CXk= ξk models the inter-
vention case, where ξk is the actual intervention value assigned
to the variable Xi through the context variable CXk. This approach
is consistent with the concept of force variables adopted in the
literature.[14,41] In our case, to model hard interventions with
known targets as context changes in time-series data, we assume
the three assumptions made by the JCI framework, specifically
we used the JCI123 version of the framework.[14] The three
assumptions are the following.

JCI 1 Exogeneity: No system variable causes any context vari-
able, i.e.

∀k ∈ K, ∀i ∈ ℐ∶i ! k ∈= GðℳÞ (4)
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JCI 2 Complete randomized context: No context variable is
confounded with a system variable, that is

∀k ∈ K, ∀i ∈ ℐ∶i ↔ k ∈= GðℳÞ (5)

JCI 3 Generic context model: The context graph GðℳÞK is of
the following special form.

∀k 6¼ k0 ∈ K∶k ↔ k0 ∈ GðℳÞ ∧ k ! k0 ∈= GðℳÞ (6)

where GðℳÞ represents the graph of the metasystem G, and
GðℳÞK is the subgraph of GðℳÞ specifically related to the context
variables. The exogeneity assumption (JCI1) is commonly
applied when the context encodes interventions on the system
that have been predetermined and executed before any measure-
ments are taken. This is the approach we use to model and con-
duct interventions. Assumption 2 posits that the choice of
intervention is independent of any other factors that might influ-
ence the system and that the observed context variables fully
describe the context. JCI3 is introduced to model a scenario
where the context distribution contains no (conditional) indepen-
dencies. This assumption is made when the goal is not to model
causal relationships among the context variables themselves, but
rather to use these variables to help model causal relationships
among the system variables. Note that JCI3 can only be assumed
if both JCI1 and JCI2 hold, which is true in our case.
Additionally, since we are dealing with interventions with known
targets, we have added a fourth assumption: each context node
can only influence a single-system variable, specifically the one
undergoing the intervention. This is because the intervention
variable is known and provided to the algorithm.

At this point, we can further clarify the concept of context
nodes. Essentially, the context node is a dummy exogenous vari-
able (i.e., a “metavariable” that does not exist in the real system)
that is used to inject the interventional data into the intervention
variable without ignoring its parents. Since the context node is
exogenous (by the JCI1 assumption) and models the interven-
tion, the model’s structure does not change when transitioning
between observational and interventional cases. Following the
JCI framework for causal discovery with both observational
and interventional data,[14] the interventional process in
CAnDOIT is generated by creating context nodes (e.g., CXk) that
are added as parent of the system variables (e.g., Xk) and govern

their possible values. The context node affects its system variable
instantaneously (at the same time step) injecting the interven-
tional data into it and maintaining its value constant for the dura-
tion of the intervention. Note that, as the context node does not
carry temporal information, that is, its value does not change over
time, we modeled it as a unique node in the graph confounding
its corresponding system variable at all the time intervals
(see Figure 1 CAnDOIT blocks). This way of modeling context
node as a parameter rather than a variable has been previously
adopted in the literature.[16,38]

Figure 1a shows an example of a context variable to handle a
hard intervention. Initially, a causal structure is obtained using
only observational data, Figure 1a (OBS). When intervening on
X2, all its input dependencies need to be removed, resulting in a
different causal structure Figure 1a (INT X2). CAnDOIT instead
creates a context node CX2 connected to X2 at each time step.
Since the intervention is now assigned to the context variable
CX2, and the latter is not affected by any other variables (JCI1
assumption), there is no need to modify the original causal struc-
ture. As a result, we obtain a unified causal structure Figure 1a
(CAnDOIT) that represents both observational and interven-
tional data. Figure 1b demonstrates the application of CAnDOIT
with multiple interventions. Figure 1b (OBS) shows the causal
structure describing the observational case. Figure 1b (INT X2)
and (INT X0) depict the two different causal models correspond-
ing to the two interventions, X2 and X0, respectively. Figure 1b
(CAnDOIT) illustrates the unified causal structure obtained by
CAnDOIT.

Notably, in the case of multiple interventions, the context
nodes are all connected by bidirected links between each pair
of context nodes (JCI3). An example of a common situation
where context variables are employed to model interventions
and the context distribution contains no CIs is what the JCI
authors refer to as a diagonal design, that is, only one interven-
tion is active at a time.[14] Applying this concept to the time-series
domain, we model multiple interventions in such a way that only
one intervention is active within a specific time interval.

3.3. Faithfulness Assumption

In the context of constraint-based causal discovery, the so-called
faithfulness assumption plays a crucial role in ensuring that the

t - 2 t - 1 t

X0

X1

X2

X0

X1

X2

X0

X1

X2

X0

X1

X2

X0

X1

X2

X0

X1

X2

t - 2 t - 1 t t - 2 t - 1 t

X0

X1

X2

X0

X1

X2

X0

X1

X2

CX2

t - 2 t - 1 t

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

t - 2 t - 1 t

X

X

X

X

X

X

X

X

X

t - 2 t - 1 t t - 2 t - 1 t

X

X

X

X

X

X

X

X

X

CX2

CX

(a) (b)

Figure 1. CAnDOIT effectively employs context variables to handle observational and interventional data, resulting in a unified causal structure that
accommodates both types of data. CAnDOIT blocks in a,b) provide examples of this unified causal structure in cases of single and multiple interventions,
respectively.
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inferred causal relationships from observational data represent
accurately the true underlying causal structure. Essentially, this
assumption asserts that all CI relationships in the data are encoded
in the reconstructed causal graph. This means that if a variable is
conditionally independent from another, given a set of variables in
the data, then no direct edge should exist between them in the
graph.[42] Like its predecessor LPCMCI, CAnDOIT is a
constraint-based causal discovery method that requires the
faithfulness assumption, even with the introduction of new con-
text variables for modeling interventions. This is crucial for the
correctness of the algorithm. Since we combine both observational
and interventional data, our output (time-series PAG) must be
faithful to the CIs present in both types of data. To ensure this,
we test for (CI using only the pooled dataset (observational and
interventional) and never consider the two cases separately.
Testing for independence using only part of the data might pro-
duce results that are unfaithful to the remaining data.

From the example in Figure 1a, we can see how CAnDOIT
reconstructs the causal model using both observational and inter-
ventional data, consistently with the faithfulness assumption.
As shown in Figure 1a (CAnDOIT), the metasystem M created
by CAnDOIT includes three system variables (X0, X1, X2) and a
context variable CX2, which models the intervention on X2.
Although the hard intervention on the variable X2 overrides
the relationships between X2 and its parents Pa(X2)= X0, it does
not compromise the faithfulness of the joint distribution P(CX2,
X0, X1, X2) with respect to the joint causal graph. Indeed, even
though X2 and Pa(X2)= X0 are independent in the intervention
setting, they are still dependent in the observational one.
Therefore, as long as we do not test for independences in the
subset of interventional data separately, but restrict ourselves
to testing independences only in the pooled dataset that com-
bines all contexts, the faithfulness assumption remains valid.[14]

3.4. CAnDOIT Algorithm

Figure 2 depicts a detailed flowchart of CAnDOIT, explaining
each step of the algorithm with an example. In particular, the
steps executed by our approach are as follows: 1) CAnDOIT takes
observational and interventional data as input; 2) Using the

knowledge of the intervention target Z, the context block adds
the context node CZ to the set of variables considered in M, plus
an instantaneous link CZ!Z to the initial causal structure, that
is, a fully connected graph that is the starting point of the
LPCMCI algorithm; 3) The system variables (X, Y, Z ), along with
the context node CZ, are injected into the causal discovery block;
4) LPCMCI performs the causal analysis on the metasystem M
and then removes both the context variable CZ and the link
CZ!Z before returning the causal model; and 5) CAnDOIT
outputs a time-series PAG.

A detailed pseudocode explanation of our approach is pre-
sented in Algorithm 1. A Python implementation of
CAnDOIT is also publicly available (https://github.com/
lcastri/causalflow).

Being based on LPCMCI, our CAnDOIT inherits its necessary
conditions for proper functioning: causal Markov condition,
faithfulness, acyclicity. Furthermore, like its predecessor,
CAnDOIT can adapt to any type of data, including linear and
nonlinear relationships, multiple timelags, various types of
noise, and it cannot detect cyclical relationships. It retains the
output format of a time-series PAG. Specifically, CAnDOIT pro-
duces a time-series PAG with a number of layers determined by
the algorithm parameters τmin and τmax (see Algorithm 3 inputs).
By default, τmin is set to 0 to account for the instantaneous links
created for the context variables. On the other hand, τmax repre-
sents the maximum time delay considered when the algorithm
performs CI tests between variables across different time steps.
Consequently, the time-series PAG consists of τmaxþ 1 layers,
corresponding to the time steps t� τmax, t� (τmax� 1),…,t.

PAGs are used to represent the MEC of MAGs. The latter
extend the DAGs representation by including also the bidirected
link (↔) to represent variables confounded by a latent con-
founder. PAGs further generalize MAGs by incorporating addi-
tional edge types, specifically and , to handle uncertainties
in edge orientations. For example, in a PAG, a link corre-
sponds to two possible MAGs: X! Y (where X is an ancestor
of Y ) or X↔ Y (where X and Y are confounded by a latent vari-
able). Similarly, a link in a PAG represents two possible
MAGs: X! Y (where X is an ancestor of Y ) or Y! X (where
Y is an ancestor of X ).

CAnDOIT
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Figure 2. CAnDOIT’s block scheme representation. CAnDOIT processes observational and interventional data; the context block adds context variables
(CZ ) linked to the actual intervention variable (Z ) with an instantaneous link (CZ! Z ); Finally, the LPCMCI block finalizes the causal discovery process.
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4. Evaluation on Random Synthetic Models

We designed experiments to assess the accuracy and effective-
ness of our approach in handling interventional data and to
examine its impact on the causal discovery process. These experi-
ments aimed to evaluate our method’s performance in various
scenarios: linear and nonlinear systems, with and without latent
confounders, and involving single or multiple interventions.

In this section, we evaluated the correctness and performance
of CAnDOIT on a large set of randomly generated synthetic mod-
els. Later, in Section 5, we will also test it on a simulated robotic
scenario.

4.1. Random Synthetic Models

To evaluate our approach’s effectiveness in handling interventional
data and its impact on the causal structure, we devised five testing
strategies, denoted as S1, S2, S3, S4, and S5. In the first strategy (S1),
we assessed our approach’s performance with linear systems while
varying the number of observable variables and without hidden
confounders. Strategy S2 extends S1 by introducing hidden con-
founders while retaining the system as linear and maintaining
the same range of the number of variables. In both S1 and S2, only
a single intervention is conducted. In strategy S3, we evaluated how
CAnDOIT performs with linear systems and hidden confounders
when multiple interventions are applied, while keeping the num-
ber of observable variables fixed. Strategies S4 and S5 mirror S2 and
S3, respectively, but focus on nonlinear systems.

To facilitate the aforementioned evaluations, we developed a
synthetic model generator capable of creating random systems of
equations with hidden confounders. This tool offers various
adjustable parameters, including time-series’ length, number
of observable variables, observable parents per variable (link den-
sity), hidden confounders, and confounded variables per hidden
confounder. Moreover, it includes also noise configuration, min-
imum and maximum time delay to consider in the equations,
coefficient range, plus functional forms, and operators used to
link various equation’s terms. With this generator, we can create

ground-truth causal models to test our algorithm and generate
observational and interventional data based on the generated
causal structure. This enables us to simulate different scenarios
and thoroughly analyze the behavior of our approach under vari-
ous conditions. A detailed explanation of the random-model gen-
erator is presented in Appendix A, Supporting Information.
Examples of randomly-generated causal models for each specific
evaluation strategy are shown in Figure 3.

Somemodel generators and causal discovery benchmarks have
been introduced in the literature, for example, CauseMe,[32] a col-
lection of synthetic, hybrid, and real observational data mostly for
climate and weather scenarios. Other random model generators
have been proposed.[43] However none of them can generate
entirely random causal structures along with both observational
and interventional data like the one here developed.

Our synthetic model evaluation is crucial to validate
CAnDOIT’s performance in retrieving more accurate causal
models compared to other methods. Opportunely tuned, our ran-
dom model generator is not constrained by any assumptions
regarding model linearity, effectively excluding from the evalua-
tion noise-based discovery methods.[27,28] As CAnDOIT is based
on the LPCMCI causal discovery algorithm, the latter was used as
the benchmark for this evaluation.

4.2. Evaluation Setting

We evaluated CAnDOIT using the random model generator
mentioned in Section 4.1. Five evaluation strategies were
devised. For each strategy, we first conducted causal discovery
analysis with LPCMCI. Based on its result, we then selected
which variable(s) to intervene on. The choice of intervention var-
iable(s) was determined by the observable variable(s) identified
by LPCMCI as having ambiguous links ( and ). The goal
of these interventions was to (partially) resolve the ambiguities
in these links. In cases where LPCMCI returned a causal model
with ambiguous links originating from multiple nodes, we per-
formed an intervention for each of these nodes. In the evaluation
results presented in Section 4.4, we report two curves for

Algorithm 1. CAnDOIT.

Require: obs. Dobs and int. Dint ts data, int. target variables Xi, significance level α, min and max timelag τmin, τmax.

1. CM0← fully connected PAG with for lagged dependencies and for contemporaneous dependencies ← LPCMCI starting point

2. ℳ←ℐ add the set of system variables X ¼ ðXiÞi∈ℐ to the meta-system ℳ

3. for each int. target variables Xi do

4. CXk← create the context variable CXk associated to the intervention system variable Xi

5. ℳ←CXk add CXk to the meta-system M

6. CM0← add CXk to the LPCMCI initial condition CM0

7. for each τ in range(τmin, τmax) do

8. CM0← add the link CXk! Xi(t�τ) to CM0

9. Ds← [Dobs, Dint]

10. CM= LPCMCI (Ds, α, τmin, τmax, CM0)

11. CM← remove context variables CXk and related links

12. return CM ← time-series PAG
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Figure 3. Causal models randomly generated with their corresponding systems of equations on the bottom. a) An example of a linear system for the
S1 evaluation strategy, which has no hidden confounders. b) A random linear system for the S2 evaluation strategy, including two hidden confounders
(H0, H1), c) An example of a five-variable random linear system with two hidden confounders (H0, H1) for the S3 evaluation strategy. d,e) Nonlinear
counterparts of (b,c), respectively. For ease of reading, we present only examples with a maximum timelag of 3, 8 observable variables and 2 hidden
confounders. However, in the S1, S2, S4 evaluation strategies, the maximum number of variables was 12, and the maximum number of hidden con-
founders was 3.
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each metric, both describing CAnDOIT’s performance:
CAnDOIT_mean, which depicts the average for the analyzed met-
ric across all interventions, and CAnDOIT_best, which shows the
result that produced the most accurate (highest F1-score) causal
model.

The S1 evaluation strategy analyzes how CAnDOIT behaves
with linear systems, where the number of observable variables
ranges from 5 to 12 and there are no latent confounders. S2
extends S1 by introducing a random number of latent confounders
(from 1 to 3) that affect a specific number of observable variables.
In both S1 and S2, we perform a single intervention following the
strategy explained above. In the S3 evaluation strategy, we analyze
how CAnDOIT performs with an increasing number of interven-
tions while keeping the number of observable variables fixed.
We focus again on linear systems, this time composed of five
observable variables plus a random number of hidden confound-
ers (from 1 to 3). The number of interventions ranges from 1 to 3.
As mentioned earlier, the S4 and S5 evaluation strategies are the
nonlinear counterparts of S2 and S3, respectively.

The two algorithms in the comparison, LPCMCI and CAnDOIT,
used observational time-series data. For CAnDOIT, in case of S1,
S2, S4, we also conducted a single intervention on the variable-
originating ambiguous links, while for S3 and S5, we conducted
up to three interventions. To manage the computational cost
and ensure a fair comparison, both algorithms receive the same
amount of data. Specifically, LPCMCI used 1300 observational data
samples, while CAnDOIT used 1000 samples of observational data
and 300 samples of interventional data. The 300 samples of inter-
ventional data were equally divided among the number of interven-
tions. Moreover, the minimum and the maximum timelags
considered in the causal analysis were set to 0 and 3, respectively.
Finally, the link density parameter, which corresponds to the num-
ber of observable parent per variable, was set to 3.

Inspired by the evaluation analyses done in the literature for
PCMCI, PCMCIþ, and LPCMCI,[19,31,34] we used similar noise
configurations (uniform, Gaussian, Weibull) and the same value
range for the coefficients that interconnect different terms within
the equation, that is, [0.1, 0.5]. This choice of parameters allows
to create random systems without encountering divergences or
singularities, which commonly arise when attempting to gener-
ate time-series equations, especially when a broad range of
parameter values and autocorrelation terms is considered.
Moreover, differently from PCMCIþ and LPCMCI’s evaluation
strategies, which used a predetermined nonlinear functional
form, we employed several functional forms, both linear and
nonlinear, randomly chosen. This approach increased the spar-
sity and diversified the experiments to explore a broader range of
scenarios. The complete set of parameters used in our evaluation
strategies is listed and discussed in detail in Table S1 and S2 of
Appendix A, Supporting Information.

4.3. Evaluation Metrics

The evaluation metrics were categorized into two main groups.
The first one comprises metrics to assess CAnDOIT’s ability in
removing ambiguous links and includes mean false positive rate
(FPR), mean number of ambiguous links (uncertainty), and
mean number of equivalent MAGs that the PAG output by

the algorithms can represent (PAG size) across all tests. The sec-
ond category instead evaluates CAnDOIT’s overall performance
in recovering the correct causal model and its execution time.
These last metrics include mean structural hamming distance
(SHD), mean F1-score, and mean execution time across all tests.
All the means were computed based on 25 test runs with differ-
ent random systems for each configuration. Note that for the
FPR, SHD, and F1-score metrics, we adopted the same approach
used in LPCMCI’s evaluationmetrics.[19] Specifically, we not only
considered the existence of a link between two nodes but also the
tail and head markers of the links. Thus, in calculating these met-
rics, we measured both the adjacency (presence of a specific link)
and the orientation (tail and head markers of a specific link).

For sake of clarity, since less is known in the literature, we
explain uncertainty and PAG size metrics a little more in detail.
The uncertainty metric quantifies the number of ambiguous
links present in the discovered causal model ( and ).
This metric is utilized to assess CAnDOIT’s capability in remov-
ing ambiguities. Consequently, a lower value indicates better per-
formance. The PAG size metric quantifies the number of MAGs
equivalent to the discovered one. It calculates this number based
on the count of ambiguous links in the estimated causal
model. As already explained in Section 3.4, each ambiguous link
can represent two possible links: can represent either! or↔,
while can represent either! or ←. Consequently, for each
ambiguous link present in the final causal model, two equivalent
MAGs are generated. Finally, the PAG size metric is defined as
follows.

PAG Size ¼ 2Uncertainty (7)

This metric is employed to evaluate CAnDOIT’s effectiveness
in enhancing identifiability by using interventional data.

4.4. Results on Synthetic Models

Figure 4–8 compare the causal discovery results obtained with
LPCMCI (red dotted lines), CAnDOIT_mean (green dashed
lines), and CAnDOIT_best (blue lines). The different markers
in the graphs represent the mean scores computed across 25
run tests for each configuration, while the error bars show the
confidence levels determined by 1000 bootstraps over the 25
results. Additionally, a linear mixed model (LMM) was used to
assess the statistical validity and robustness of the analysis,[44]

detailed results of which are provided by Table S3 and S4 in
Appendix B, Supporting Information.

The S1, S2, S3, S4, and S5 analyses are presented in Figure 4–8,
respectively, demonstrating the superior performance of
CAnDOIT compared to LPCMCI across all scenarios. Note that,
for all the analyses, the PAG size score is shown on a logarithmic
scale to improve readability. In S1 (Figure 4), CAnDOIT (both
CAnDOIT_mean and CAnDOIT_best) performs remarkably
well in all metrics. Figure 4a,c,e shows FPR, uncertainty, and
PAG size, respectively. It consistently maintains lower FPR
and uncertainty scores compared to LPCMCI, leading to
improved identifiability across all S1 cases, largely due to its
use of interventional data. The superiority of CAnDOIT is evi-
dent also in the SHD and F1-score comparisons shown in
Figure 4b,d, respectively, where CAnDOIT continues to
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consistently outperform LPCMCI. In terms of execution time,
depicted in Figure 4f, CAnDOIT appears slower compared to
LPCMCI due to the introduction of the context node used to
model the single intervention. The decreasing trend in the
FPR score observed in Figure 4a is associated with the increasing
number of variables. This decrease is a result of the higher true
negative score, which grows with the number of variables.
Furthermore, it is important to specify that the different perform-
ances between CAnDOIT_mean and CAnDOIT_best are due to
the fact that CAnDOIT_best (the CAnDOIT result with the single
intervention yielding the highest F1-score) is often associated
with an intervention on a variable that is the origin of multiple
ambiguous links. Intervening on such a variable is more likely to
yield better performance compared to intervening on a variable
that originates only a single ambiguous link. On the other hand,

CAnDOIT_mean considers all conducted interventions and aver-
ages the results.

In the S2 analysis (Figure 5), which is analogous to S1 but
includes a random number of hidden confounders, CAnDOIT
continues to outperform LPCMCI. As shown in Figure 5a,c,
CAnDOIT consistently maintains low FPR and uncertainty
scores, surpassing LPCMCI. The S2 analysis reaffirms the bene-
fits of using interventional data to enhance the identifiability of
the causal graph. In particular, the PAG size metric in Figure 5e
shows how CAnDOIT, utilizing interventional data, is able to
keep the number of equivalent MAGs consistently lower than
LPCMCI. Unlike in S1, the difference between CAnDOIT and
LPCMCI is less pronounced in the SHD score, as shown in
Figure 5b, though the advantage of using interventional data
remains evident in the F1-score (Figure 5d). Similar to S1, the

(a) (b)

(c) (d)

(e) (f)

Figure 4. LPCMCI (red dotted line), CAnDOIT_mean (green dashed line), and CAnDOIT_best (blue) in S1 analysis: linear systems with a number of
observable variables ranging from 5 to 12 and no hidden confounders. a) FPR; b) SHD; c) uncertainty; d) F1-score; e) PAG size (reported in logarithmic
scale); f ) time (expressed in seconds).
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employment of context variables to model interventions
makes CAnDOIT slower compared to LPCMCI, as shown in
Figure 5f.

In the S3 analysis (Figure 6), we fixed the number of observ-
able variables and varied the number of interventions to evaluate
how our algorithm handles multiple interventions and whether
they contribute to better performance compared to the single
intervention cases analyzed in S1 and S2. CAnDOIT continues
to significantly outperform LPCMCI. As shown in Figure 6a,c,
e, CAnDOIT yields lower FPR, uncertainty, and PAG size scores
than LPCMCI, demonstrating how an increasing number of
interventions helps reduce the number of uncertain links and,
consequently, the PAG size. Figure 6b,d shows an improvement
in the SHD and F1 scores when transitioning from one to two
interventions, though there is a slight deterioration in

performance with three interventions. This can be attributed to
the number of samples associated with each intervention.
As explained in Section 4.2, to ensure a fair comparison,
LPCMCI and CAnDOIT always use the same amount of data.
In the case of multiple interventions, the 300 interventional sam-
ples are equally divided among the number of interventions,
meaning that with three interventions, each has 100 samples.
This reduced sample size for each intervention is not sufficient
to further improve the SHD and F1 scores compared to the two
interventions cases, explaining the deterioration in these metrics
in the three interventions case. As in previous analyses,
CAnDOIT appears slower compared to LPCMCI, as shown in
Figure 6f.

The S4 analysis (Figure 7) is the nonlinear counterpart to S2.
Specifically, it analyzes nonlinear systems with a number of

(a) (b)

(c) (d)

(e) (f)

Figure 5. LPCMCI (red dotted line), CAnDOIT_mean (green dashed line), and CAnDOIT_best (blue) in S2 analysis: linear systems with a number of
observable variables ranging from 5 to 12 and a random number of hidden confounders (from 1 to 3). a) FPR; b) SHD; c) uncertainty; d) F1-score; e) PAG
size (reported in logarithmic scale); f ) time (expressed in seconds).
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observable variables ranging from 5 to 12 and a random number
of hidden confounders (from 1 to 3). Like S2, this analysis helps
to understand how CAnDOIT scales with an increasing number
of variables in the system, but in this case with nonlinear rela-
tionships. In this analysis, CAnDOIT’s FPR and SHD scores,
depicted in Figure 7a,b respectively, remain comparable to
LPCMCI. However, the benefit of using interventional data is
evident in the uncertainty and consequently the PAG size, as
shown in Figure 7c,e respectively. Additionally, in terms of
F1-score (Figure 7d), CAnDOIT consistently outperforms
LPCMCI, with both CAnDOIT_mean and CAnDOIT_best.
The difference in terms of execution time between LPCMCI
and CAnDOIT (Figure 7f ) is more pronounced for the nonlinear
case. This is due to CI test used in this case, namely Gaussian
process and distance correlation, which is slower compared to the

partial correlation test used in the linear case. In CAnDOIT, the
introduction of context variables to model interventions further
accentuates this aspect.

Finally, in the S5 analysis (Figure 8), similar to S3, we fixed the
number of observable variables and varied the number of inter-
ventions to assess CAnDOIT’s ability to handle multiple inter-
ventions and their contribution to performance enhancement
compared to a single intervention. In this case, the FPR scores
for LPCMCI and CAnDOIT are comparable across the three sce-
narios, as shown in Figure 8a. However, using interventional
data, CAnDOIT outperforms LPCMCI in the remaining metrics,
demonstrating its capability to remove ambiguities: it achieves
lower uncertainty and consequently lower PAG size scores
(Figure 8c,e). Performing multiple interventions results in
improvements in CAnDOIT’s SHD and F1 scores (Figure 8b,d)

(a) (b)

(c) (d)

(e) (f)

Figure 6. LPCMCI (red dotted line), CAnDOIT_mean (green dashed line), and CAnDOIT_best (blue) in S3 analysis: linear systems with five observable
variables, a random number of hidden confounders (from 1 to 3) and an increasing number of interventions, ranging from 1 to 3. a) FPR; b) SHD;
c) uncertainty; d) F1-score; e) PAG size (reported in logarithmic scale); f ) time (expressed in seconds).
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when transitioning from one to two interventions. However, as
seen in S3, CAnDOIT is not able to further enhance its perfor-
mance with three interventions. In this case, CAnDOIT’s execu-
tion time is longer compared to LPCMCI, and Figure 8f shows
that this increase in time directly depends on the number of
interventions.

It is important to highlight the significance of these analyses.
Although in all these evaluation strategies, CAnDOIT utilized a
subset of observational data alongside interventional data specif-
ically aimed at testing links affected by ambiguities, this still
yielded a consistent improvement in overall accuracy of the
causal analysis. This improvement is evident in Figure 4d,
5d, 6d, 7d, and 8d, which represent the F1-scores for S1, S2,
S3, S4, and S5, respectively. Additionally, there is a significant
enhancement in the identifiability of the causal graph, as shown

in Figure 4e, 5e, 6e, 7e, and 8e, which illustrate the PAG size.
These positive results are even more noteworthy considering that
CAnDOIT operates with 300 fewer observational data samples
compared to LPCMCI.

Overall, these evaluation strategies demonstrate CAnDOIT’s
effectiveness in handling interventional data and its superiority
over the current state-of-the-art LPCMCI causal discovery algo-
rithm in producing more accurate causal models, decreasing
the uncertainty and the PAG size. The LMM analysis confirmed
the statistical significance of our evaluation strategies, as indi-
cated by the F-statistics and p-values for all scores shown in
Table S3 and S4 of Appendix B, Supporting Information.
Moreover, the table provides further useful statistical informa-
tion, confirming the importance of the algorithm choice
(LPCMCI or CAnDOIT).

(a) (b)

(c) (d)

(e) (f)

Figure 7. LPCMCI (red dotted line), CAnDOIT_mean (green dashed line), and CAnDOIT_best (blue) in S4 analysis: nonlinear systems with a number of
observable variables ranging from 5 to 12 and a random number of hidden confounders (from 1 to 3). a) FPR; b) SHD; c) uncertainty; d) F1-score; e) PAG
size (reported in logarithmic scale); f ) time (expressed in seconds).
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5. Evaluation on Robotic Scenario

Once established, through the evaluation strategies presented in
Section 4, that our approach works correctly, we used it for
modeling a robotic scenario in a simulated environment. Our
strategy was first to extract time-series data from the simulator
and then use it for causal discovery in the presence of a hidden
confounder.

5.1. Causal World for Robot Camera Modeling

We designed an experiment to learn the causal model in a hypo-
thetical robot arm application equipped with a camera. Our focus
was on estimating the causal relationship between the color’s
brightness of objects as captured by the camera and various

factors, including camera-to-object distance. For this evaluation,
we utilized the well-known benchmark Causal World,[45] which is
designed for causal structure learning in a robotic manipulation
environment. The environment consists of a TriFinger robot, a
floor, and a stage. It allows for the inclusion of objects with vari-
ous shapes, for example, cubes. This simulator is widely used in
the causality community due to its ability to support diverse
manipulation tasks and interventions,[46–48] including changing
the objects’ color or mass.

For simplicity, we focused on a specific scenario using only
one finger of the robot, where the finger’s end-effector was
equipped with a camera. The scenario (shown in Figure 9) con-
sists of a cube placed at the center of the floor, surrounded by a
white stage. The color’s brightness (b) of the cube and the floor is
modeled as follows.

(a) (b)

(c) (d)

(e) (f)

Figure 8. LPCMCI (red dotted line), CAnDOIT_mean (green dashed line), and CAnDOIT_best (blue) in S5 analysis: nonlinear systems with five observ-
able variables, a random number of hidden confounders (from 1 to 3) and an increasing number of interventions, ranging from 1 to 3. a) FPR; b) SHD;
c) uncertainty; d) F1-score; e) PAG size (reported in logarithmic scale); f ) time (expressed in seconds).
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b ¼ Kh
H

Hmax
þ Kv 1� v

vmax

� �
þ Kd

dc
dcmax

(8)

where H is the end-effector height, ν its absolute velocity, and dc
the distance between the end-effector and the cube. Kh, kν, kd are
the gains associated to each factors, while Hmax, vmax, and dcmax

are the maximum values for H, ν, and dc, respectively.
This model captures the shading and blurring effects on the
cube due to the height of the end-effector, its velocity, and its
distance from the cube. On the other hand, the floor, being
darker and larger than the cube, is only affected by the end-
effector’s height.

The data collected from the scenario therefore includes the
floor (Fc) and the cube (Cc) colors, as well as the height (H),
the absolute velocity (ν) of the end-effector, and its distance from
the cube (dc). The ground-truth SCM for the variables Fc and Cc is
expressed as follows.
�
FcðtÞ ¼ bðHðt� 1ÞÞ
CcðtÞ ¼ bðHðt� 1Þ, vðt� 1Þ, dcðt� 1ÞÞ (9)

Note thatH, ν, and dc are obtained directly from the simulator
and not explicitly modeled.

5.2. Results on Robotic Scenario

The evaluation involved three main steps. 1) We generated obser-
vational data containing all the variables in the system (Fc, Cc,H,
ν, dc), as shown in Figure 9a, and performed the causal analysis
using LPCMCI. 2) We intentionally hid the variableH, represent-
ing the height of the end-effector, to create a hidden confounder
and a spurious relationship between Cc and Fc. Again, we used
LPCMCI for the causal analysis. 3) We conducted an intervention
on the floor’s color, setting it to green (Figure 9b), and collected
data from the simulator. Then we used CAnDOIT for the causal
analysis with both observational and interventional, accounting
for the hidden confounder H. The observational time series
had a length of 600 samples, while the interventional time
series consisted of 125 samples. Both were recorded at a sam-
pling rate of 10 Hz. Also in this case, to ensure a fair analysis,
LPCMCI and CAnDOIT used exactly the same amount of data.

Figure 9. Causal World:[45] a robotic manipulation environment. a) observational experiment; b) experiment with intervention performed on the floor’s
color.

(a) (b) (c)

Figure 10. Causal model of the robot camera in Causal World. a) LPCMCI’s result with all the variables being observable; b) LPCMCI’s result with hidden
H; c) CAnDOIT’s causal model with hidden H.
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Consequently, LPCMCI received the complete set of observa-
tional data, whereas for CAnDOIT part, the observational data
was replaced by interventions, specifically 475 observational sam-
ples and 125 interventional ones.

Figure 10 shows the results for each specific step: (10a) causal
model using LPCMCI with observable variables only; (10b)
LPCMCI’s result with hidden H. Figure 10c shows the causal
model retrieved by CAnDOIT that, by leveraging both observa-
tional and interventional data, successfully identify the bidirected
relation between Cc and Fc, representing the presence of a latent
confounder (H).

Also in this experiment, we can see the benefit of using inter-
vention data alongside the observations. In Figure 10b, LPCMCI
is not able to orient the contemporaneous (spurious) link
between Fc and Cc due to the hidden confounder H. This yields
the ambiguous link , which does not encode the correct link↔
(the represents either! or ←). Instead CAnDOIT, using
interventional data, correctly identifies the bidirected link
Fc↔Cc, decreasing once again the uncertainty level and increas-
ing the accuracy of the reconstructed causal model.

6. Conclusions and Future Work

In this article, we proposed CAnDOIT, a new state-of-the-art
algorithm that enables causal discovery using both observational
and interventional data via context variables. We validated our
approach experimentally on random synthetic models and tested
on a robotic simulator for causal discovery, focusing on the sig-
nificance of interventional data. Our results confirmed that
CAnDOIT significantly improves previous causal discovery
methods, offering enhanced accuracy, model identifiability.
They also highlight its capability to handle interventional data
effectively and its potential for real-world robot applications.
The proposed method lays the foundation for new observations-
and interventions-based causal discovery methods on time-series
data, with numerous opportunities for future research. Firstly, to
the best of our knowledge, various causal discovery algorithms
combine observational data and hard/soft interventions with
known/UT, but only in the static domain. We present, for the
first time, a causal discovery algorithm that combines observa-
tional and interventional data in a time-series setting. We
acknowledge that the current version of CAnDOIT only deals
with hard interventions on known targets. However, this chal-
lenge has not yet been investigated in the time-series domain.
Furthermore, this solution is useful in many applications where
intervention variables are known (e.g., robotics). We believe that
CAnDOIT is a significant step in the right direction and future
extensions could accommodate soft interventions and UT.

An interesting analysis would be to test how the ratio between
the lengths of observational and interventional time-series data
influences the algorithm’s performance. Since our application
targets are intelligent robot applications, particularly in industrial
and intralogistics settings,[49] it would be helpful to determining
the optimal amount of observational and interventional data
required to establish an accurate causal model, within a reason-
able time.

Scalability is another aspect to be further investigated. In this
article, we partially explored the scalability of CAnDOIT through

the S1, S2, S4 analyses, studying how the algorithm behaves with
an increasing number of variables. In the future we would like to
extend this analysis to check also how CAnDOIT scales with
varying lengths of observational and interventional time-series
data.

Finally, inspired by recent advances in the literature,[50] we
plan to enhance CAnDOIT by automating the selection of
intervention variables and optimizing the causal model under
constraints. Also, since the current version of the algorithm first
processes observational data, and then interventional one, a
future improvement would be to inject opportune interventions
between observation sequences. Such a functionality would
help CAnDOIT better adapt to real-world applications, where
a robot observes the scenario, intervenes, and then observes
again.
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